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Abstract. The method of multidimensional SUSY quantum mechanics is applied to the
investigation of supersymmetrical-particle systems on a line for the case of separable centre-
of-mass motion. New decomposition of the super-Hamiltonian into block-diagonal form with
elementary matrix components is constructed. Matrices of coefficients of these minimal blocks are
shown to coincide with matrices of irreducible representations of the permutation §youghich
correspond to the Young tablea@ — M, 1M). The connections with known generalizations of
N-patrticle Calogero and Sutherland models are established.

1. Introduction

One of the most natural generalizations of the standard [1] one-dimensional supersymmetrical
quantum mechanics (SUSY QM) concerns the systems in the spaces of arbitrary dimension
d [2]. It was shown for such systems that the super-Hamiltonian is a m@fix 29)
block-diagonal operator witlid + 1) components on the diagonal. These components of
the super-Hamiltonian are Scfdinger-type operators with matri€’; x C) potentials C}-
binomial coefficientsp = 0,1, ...,d). Supersymmetry of the system leads to important
SUSY intertwining relations between neighbouring components of the super-Hamiltonian
and provides definite connections between their spectra and eigenfunctions. More definitely,
for each component its spectrum consists of the eigenvalues which coincide with a part
of the eigenvalues of neighbouring components of the super-Hamiltonian. Corresponding
eigenfunctions are connected with each other by the action of supercharge operators (see
details in [2]). This approach was used successfully for some two- and three-dimensional
physical systems [3].

Itwould be interesting to apply this method for systems with another possible interpretation
of several degrees of freedom in the super-Hamiltonian. Namely, it seems to be useful in the
description of supersymmetrical systems\binteracting quantum particles on a line.

The supersymmetric generalization of a known exactly solvable M;particle Calogero
model was considered for the first time in [6], where its spectrum was found (see also [7-11]).
In [7] the hypothesis was put forward (but not proved), that the (super-)Calogero, Sutherland
and some other models possess shape invariance [12], which could help us find the spectrum
of the modelst.

T However, some kind of shape invariance for the Calogero model was constructed in [8] using the Dunkl operators
[14].
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In this paper the most general variety of supersymmetri¢glarticle systems on a
line will be considered using the generalization of the method in [2]. The only restriction,
introduced in section 2, is the condition of separability of centre-of-mass motion (CMM) [7]
in the superpotential which seems to be very natural for such systems. Introducing usual
bosonic Jacobi coordinates and their fermionic analogues, we derive the super-Hamiltonian
and SUSY intertwining relations for systems with separable CMM. This block-diagonal super-
Hamiltonian has the same matrix dimensidh 2 2V, as in [2], but with a more detailed
structure: V blocksCy_; x Cy-_; instead ofN + 1 blocksC¥ x C¥ in [2].

In section 3 the internal structure of the blocks on the diagonal of the super-Hamiltonian is
considered. Itis shown that for any the coefficientsBl.(jM) in matrix potentials coincide with
the matrices of irreducible representation of the permutation gsgumvhich is characterized
by the Young tableawv — M, 1M). This statement determines that these matrix potentials are
elementary blocks of the super-Hamiltonian, i.e. they cannot be further decomposed into the
block-diagonal form. Atthe end of section 3 the SUSY intertwining relations are built in terms
of Jacobi coordinates, using the Clebsh—Gordan coefficients for the corresponding irreducible
representations dfy. Two examples are considered in section 4. For the case-6f3 with
a particular choice of superpotential our approach gives a part of the spectrum oktBe 2
matrix Hamiltonian. The class of superpotentials corresponding-fmarticle models with
pairwise interactions (including Calogero and Sutherland models) is considered in the second
example. The connections with known generalizations [6, 9, 11, 13]-phrticle Calogero
and Sutherland models are established. The proof of the theorem of section 3 can be found in
the appendix.

2. Systems with a separable centre-of-mass motion

The supersymmetric quantum system for an arbitrary number of dimengicosasists [2] of
the super-Hamiltonian and the superchargest:

N N
Hs = %(—A +Y @W)? - AW) Y U00W

i i=1 ij=1 1)

A= 00 9 = 0/0x;

i=1
+ 1 Y +

0 EE;% (£0; + ;W) )
with the algebra

Hs ={0", 07} 3)

(Q)?=(0)?=0 @

[Hs, 0¥]=0 ©)
wherey; andvy" are fermionic operators:

(Vi ¥} =0 (¥ yj}=0 Wi v = 8. (6)

The dynamics of a SUSY QM system is determined by a superpotéWtidepending oV
real coordinategxy, ..., xy).

T Here and below the indicésj, k, ... range from 1 tav.
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For N-particle systems on a line it is natural to consider potentials with a separable

centre-of-mass motion. Therefore, in this paper we restrict ourselves by considering the
superpotentialst

N
xl+...+xN
W(xq1,...,xy) =w(x1,...,xN)+Wc<—> oiw(xy,...,xy)=0
\/ﬁ ; J

(7
allowing a separation of CM motionu(x, ..., xy) does not dependf on +- - - + xy).
Let us introduce the operator
Ky=viy +yiv —viv — v, +1=1— @ —v D@ —v) = K = (Kip)'
(8)
which plays the role of the fermionic permutation operator
Ky = ‘/f;[eij )
Ki¥i =viKy  k#i,j. (10)
In the fermionic Fock space
Yyl 10) = lin i) ¥:10) =0 iyit,....im, M <N (11)
this operator acts as
Kijlit, o oody ooy foeearimg) =ity ooy fooonrdyennsing)
Kijlit, ooy ooyig) = it oo os o oeosing) (12)
Kijlit, .. vin) = lit .., in) for i, ....im #i,J.

Let us rewriteHs for the superpotentials (7) usiﬂé,»j. We will take into account the
following equations:

N N N N
Z w;'gbja,-ajw = % Z Ie[jaiajw = Z_2L Z[&,’jaiajw + % Zalzw (13)
i,j=1 i,j=1 i#j i=1

N 1 N N
D Uit We = - (Z w:) (Z wj) w¢ (14)
=1 i=1 j

i,j= j=1

N N
D @+ We)? = (0;w)” + (W) (15)
j=1 j=1
to obtain

N N
HS = —%A + % Z(ij)z + % Z Kijaié)jw
=1 i#]

1 N N
(WP - W)+ N(Z w;) (Z w,-)wg. (16)
i=1 j=1

t The usefulness of the factoy/N will be explained later.
T Equation (7) is equivalent to the conditidn, 8x(3; — (1/N) )", d)w =O0foreveryi =1,..., N.
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For the superpotentials (7) with a separable CMM it is natural to go to the well known
Jacobi coordinatest [15]:

(xp+ -+ xp — bxps1)

1
b = ——b(b —y
17

1 N
yNzﬁ;xi

ory, = Zf\'zl Ryx;, where the matrixR is determined by (17). The derivatives are connected
by the same matrixd/dy; = 21"’:1 R 0/0x;, becauseR is an orthogonal matrix.

For the supersymmetric systems it is natural to also introduce the fermionic analogues of
the Jacobi variables:

1
oy = m(lﬁl"'"""l[’b—b‘ﬁbﬂ)
1 N
m—W;vn

or¢, = ZlNzl Ri;, where the matrixR is the same as in (17). These variables also satisfy
the standard anticommutation relations:

{br, 41} =0 o0, ¢/1=0 {or, 9/} = Su- (18)
In terms of the Jacobi variables the supercharges (2) can be rewritten as

0% = Q¢ +q*

1 9 1= 9 0
0f=_—_ i(:l:—+W/) t= i(:t—+—w).
¢ «/§¢N yy € 1 2 bX:; % dyp  Oyp

Because

{Q¢.4¥}=0 (19)

the super-HamiltonianHg, acting in a N-dimensional superspace, describes two non-
interacting supersymmetric quantum systems:

Hs={0", 07} ={q". ¢ }+{Q¢. Qc} =h+ Hc (20)
where
11 82 fow\? 92w\ =, 0w
hZQZ(__2+<3_> __2)+ qub‘bcw (21)
o\ Y Wy, ) = YOy
1 82 RYA ” + ”
He =S\ —o= *(We)" = We | + oy We (22)
2\ dyy

are(N — 1)- and one-dimensional SUSY Hamiltonians, respectively.
The Hamiltoniam: acting in the fermionic Fock space:

i - . 10) bi <b; fori<j M <N (23)

generated by fermionic creation operatp}s conserves the corresponding fermionic number.
Therefore, in the basis (23) it has [2] a block-diagonal fortn= diag(2@, ..., AN -D),

Tt From this moment on, the variables denoted by lettets c, . .. range from 1 tav — 1.
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where matrix operator™’ of dimensionC¥ _, x C¥_, is the component of in the subspace
with fixed fermionic numben/.

In the same basis the superchaggehanges [2] the fermionic number fromfito M + 1
and has the following under-diagonal structure:

0 o ... 0 0
4oy O ... 0 0
+ 0 C](+1’2) cee 0 0

(24)

0 0 0 q(+N—2,N—l) 0
Similarly, g~ = (¢*)" is an over-diagonal matrix with non-zero elementsy.
@{y.ms1)'- Analogously, He has a diagonal forntle = diagH:”, H:") in a basis
(10, ¢510)) and conserves the number of fermiaps. In this caseHéo)’(l) are scalar (non-
matrix) Hamiltonians. The one-dimensional supercha@gsQ. are a partial case of (24)
with off-diagonal componenth(oql), Oca.0- Superinvariance (5) of the super-Hamiltonian

corresponds, in components, to the intertwining relations [2] which can now be decomposed
as

hg*=q"h < h(M+l)CI(JrM,M+1) = q(+M,M+1)h(M) (25)
g h=hg” & g™ =190 (26)
HeQp = QcHe & HE'Qtoy = QeonHe (27)
QcHe = HeQp ¢ QeuoHY =HY 0cuo (28)

These intertwining relations lead [2] to the important connections between spectra and
eigenfunctions of ‘neighbouring’ Hamiltonians, whose fermionic numbers differ by 1. In
particulargy, 41, (4. 1-1)) Maps eigenfunctions af* onto those of™*V (A~ with
the same energyt (see details in [2]).
In the total fermionic Fock space
Gy b5, 100 @y, $NI0) M <N (29)

the super-Hamiltonia#ifs commutes with the operatos, ;" ¢; ¢» and¢} ¢y and therefore

conserves the fermionic numbers of bgthandgy, separately. Therefore, in this basis it has
a block-diagonal form, too:

h®+HY

=D 4 HéO)

hO + 7O (30)

N-1 €
RN + H:

wherer™, H®-® were determined above.
It is important that, due to (19), in the intertwining relations (25)—(28) one can replace
h B D by the components (30) dfs.

t Let us note that the eigenfunctionsidt” andh™*2 are not connected directly by superchargés contrary to
the hypothesis of [7] in the context of Calogero-like models.
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3. Internal structure of the components of the super-Hamiltonian

In equation (16) the super-Hamiltonidfy was written in the coordinates;, ¥ ;) in terms of

the fermionic permutation operatd; ;. In this section the structure of the blocks§ (30)
in the basis (29) will be investigated. In this basis the components dfave the form:

N 2
H{" = —%A+%Z<aa—w> Y B asu s W WY @D
j=1 N0 i%]

where the matricegi(jM) representt the operatds;; in the Fock subspace with fermionic
numberM. SignsT in (31) correspond to the componernits™ + H'”'™®) of the super-
Hamiltonian. From this moment on we will consider the componen#&bnly in the form
(31), i.e. in terms of the coordinatés;, ¢;). We preferg; to v, because in terms af;
the block structure oHs is more detailed (& blocks instead ofv + 1). The variables;
are preferable tg;, because; represent the coordinates of physical particles. It is especially
important in the cases when the particles are identical or the interaction is pairwise.

We move on to determining the matriceﬁlfﬁl) . Therelations (9) and (10) can be rewritten
as

Kyl = Z ey Kij (32)
]

where
Tijyk = Sik — 81i8ki — 81j0kj + 8130k + 80k - (33)
Applying this commutation rule to a state (1) times, we obtain

Ieijlﬁ;l g 10) = Z Tipiskas - - - Tijpinku Vi, -+ V1., 10). (34)
From the partial case of (34) withf = 1 one can see thdy;;; is a matrix element of the
permutation operatak; ; between one-fermionic states.

Thus, I%,-j realizes a tensor representation of rakof the symmetric grougsy of
permutations ofy;" on the states (11) with fixed fermionic numb&t. These states are
obviously antisymmetric.

Substitutingy,” = 3", R,d¢,j into (34), one obtains

K1]¢nl nM Z T(’])mlnl’ ce T(ij)mM”Md):r—ll o ¢n+1M |O> (35)

where§

Tiijymn = Z Ry Tijyki Rt (36)
P

Note thatK;;¢?, = ¢% K;;, so it is enough to conside;; in the subspace

Gy - B5,,10) M <N. (37)
T Itcanbe checked thz&,-j conserves the fermionic numbers of bgghandgy, so that it has the same block-diagonal
structure in the basis (29) .

1 Letus stress thmf}’” is not a matrix element, but a whole matrix of dimenstoff ; x C¥ .
§ It should be stressed th&t, in (35) permutesy;, note; .
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It is therefore possible to rewrite (35) as
Kijbs, - 05, Z Tajyosars - - Tajyoanny - - B,y 10)- (38)

.....

Thus, in the space spanned by the states (37) the opetoesd matricesBi(M) also
realize a tensor representation of ravkof the symmetric grougsy of permutations of/;"
(the states (37) are also antisymmetric).

In the appendix we prove by induction the following theorem.

Theorem. The representation (38) of the grody of permutations ofy;" is irreducible and
corresponds to the Young tablga(Vv — M, 1, ...,1) = (N — M, 1),

Itis clear thatthe & blocks(h™+H ") in (30) are ‘subblocks’ of th&/+1 components
of Hy that would be obtained if we developed a standard supersymmetric formalism }2{ for
inthe coordinates;, ;. The natural question is whether there exist even smaller ‘subblocks’,
or the blocks (31) are ‘elementary’. Because for ahydue to the statement of the theorem,
the matrices?i(JM) realize an irreducible representation$f, they cannot be simultaneously
made block-diagonal by a change of basis. In the general case, when all their coefficients
9;0;w are independent, it means thHﬁM’ cannot in turn be made block-diagonal by any
change of basis. Thus, the blocks (31) are ‘elementary’.

According to (25)—(28), these elementary blockéfgfare intertwined by the components
941y Gormrny> Liony» Qo) OF supercharges. Let us now consider the properties of
9. m+1)» 9.+ 1N the context of the permutation grosp.

Being the components of

Zwb ay z7<a/ayb+aw/ayb> (39)

the operatorg,, ,,.,, map the eigenfunctiong ™" of the subspace with fermionic number
M into the eigenfunction®™*D of the subspace with fermionic numbg# + 1. Let ¥
be the components & * in some basis of the subspace (37). The exact form of the basis is
unimportant, though it is necessary that the matrB,?}@ and the Clebsh—Gordan coefficients
introduced below be defined in this basis too. Because the dimension of the subspace (37) is
C¥_,, vranges from 1ty ,

Then the operataf(, ,.,, takes a matrix form

CNa
M+1 M M
UMY = (@l e Y =D @) o Y (40)
v=1
In the same way,
CN-1
@Ee ™) =D @) ™. (41)
v=1
Therefore, equation (39) can be rewritten as
N-1
(qz—M,MH_));w = Z a;(‘p;)uv- (42)
b=1
T The standard notation [16] for a Young tableau containingells in theith line is (A1, ..., An); if the tableau

containgn identical lines withu cells, it is denoted by. .., u™,...).
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We know thaip; is transformed under permutationsjgf as an irreducible representation
of Sy with a Young tableagN —1, 1). Therefore, the matrix eleme@;),., = (M w, 1b|M +
1v), where(M v,1 b|M + 1 ) are Clebsh—Gordan coefficients which correspond to the
transitiont: (N — M, 1Y) x (N — 1,1) — (N — M — 1,1¥*1). In the notation of [16]
the symbolsV, M + 1, 1 in the Clebsh—Gordan coefficients correspond to the representations
of Sy with the Young tableauxN — M, 14), (N — M — 1, 1%*1) (N — 1, 1), respectively.
Finally,

N-1

(@10 = Z ay - (M v, 1b|M +1p). (43)
b=1
Similarly,
N-1
Gaperan)oe = D@ - (M +10,1b|M p) a; = (a)". (44)
b=1

In thex; coordinatesq® = "', Ry AT whereAF = (1//2)(£9, + dw).
SubstitutingH ™ and (43), (44) into the intertwining relations (25), (26), one obtains

N— CM+1

Z Z Z HMD Ry AT (M 0, 1b|M + 1 )

b= =1

N—1C%4 N
Z Ron AL (M v, 1c|M +1p)H™M (45)

c=1 v=1 m=1

M

NN
ZZR,,,A (M +10,1b|M p)HM*Y
o=11=1

ﬁmz

H,stw)RcmA,;(M"'le,ldM 8). (46)

Il
&MZ

Now it follows from (45) and (46) that the eigenfunctiot$’ andw ™*D are connected
by

N-1 N C¥,
WD =3NS Ry Af (M v, 1b|M + 1 p) W™ (47)
b=1 [=1 v=1
N-1 N C¥
i = Z Z Z RemA, (M +10,1c|M p)¥M*D, (48)
c=1m=1o0=1

The relations (27) and (28) remain unchanged, because the superc@%’gjesQ(‘lyo) are
scalar operators.

T x denotes the interior product of the Young tableaux.
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4. Examples

4.1. Three-particle supersymmetrical system

In the case ofV = 2 the super-Hamiltoniah corresponds to the standard one-dimensional
SUSY QM. For the simplest non-trivial case 8f= 3 the super-Hamiltonian (30) consists of
six components: four scalar and twox22 matrix Schodinger-type operators. Their spectra
and eigenfunctions are connected with each other due to SUSY intertwining relations.

Let us consider a simple system, generated by the superpotential

3 3
W=—|n<3+aZ(xj—xk)2>—%ainz a>0. (49)
Jj<k i=1
This superpotential allows the separability of CMM (7) with
We = —%ayg (50)
3 3
w=— In<3 +a Z(xj — xk)2> - %a Z(xj — x0)2. (51)
j<k Jj<k

Two of the scalar blocks (31) of the corresponding super-Hamiltonian will then take the form
of a three-dimensional harmonic oscillator with the well known spectrum:

3 3
HO = §<Z 92 +azzxf> + la, (52)
i=1 i=1

Two other scalar components of (30) are not exactly solvable:
3
36u
HS(Z) = %<_A +a22xi2> _ 5 + %a. (53)
im1 B+a) i (xj —x)?)?

Nevertheless, SUSY intertwining relations (45) and (46) give us the opportunity to find the
partt of spectrum of both matrix components (31):

3 182 +1242%° % BV (x; — x;)?
D 1 2 2 ! J
Hy :§<—A+a § x,.>— )
i=1

i<j
where matricesBi(}) realize a simple irreducible representation of the grésip

B+a Y5 (x; — x)?)?
1 1 1 1
o — 1.0 g — 2 2“@ B — 2 —3V3
2=\ o 1 23 = %ﬁ _% 13 — _%3 _% :

These Hamiltonians, (52) and (53), are intertwined (see (45) and (46)) by the supercharges
(43) and (44), where

1 2a(3x; — +/3y3)
AF = (£ — — —3/3 > 55
; ﬁ( '~ 374 27<k(xj 2 a(x; /3y3) (55)

The Clebsh—Gordan coefficients can be found, for example, in [16]. In the cAse-d3 one
can write them explicitly:

(0v,1b]1p) = (L, 1b|0v) =587 + 628, where v =1
(20,1b|1p) = (1p,1b[20) = §%5; — 828, where o =1.

+3a  (54)

(56)

T In some sense, this situation resembles so-called quasi-exactly solvable models [17], for which only a part of
eigenstates and eigenfunctions is known.
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In these expressions = 1 ando = 1 means that these indices span the basis of the
representations dfs, corresponding to the Young tablea(® and(1%), respectively. These
representations are one dimensional.

The generalization onto high#t is straightforward. Let us note, that the above approach
can also be applied without any change to the systems, which are not symmetric under
permutations of;.

4.2. N-particle supersymmetric systems with a pairwise interaction

If we are interested in the scalar and matrix Hamiltoniat}¥’ with a pairwise interactiont,
it is necessary (but insufficient) to consider superpotentials such thatt

gidjw = f(xi —x;) i # ] (57)
where f (x) is some real function. It means that
N N
w = ZU(X,‘ —x‘j)+2h(x‘,~) (58)
i<k j=1

whereU (x) andh(x) are also real functions.
We will restrict ourselves further by considering only the case of

N
w= Z U(xi — xj) Ux) = U(—x). (59)

i<j

For suchw componentsZ{" (see (31)) have the form

N N N

M M

S DA IRV Bl Y
i#l i#l A i#]

WhereU,'j =U(x; — )Cj).
These matrix Hamiltonians are intertwined by relations (45) and (46), where

1 N
Af=—"—(+9 U'(x; — ) 61
; ﬁ< /+; (x xk)> (61)

For HY to be pairwise, it is also necessary [5, 7] t@f;ll#l#i U, U/

lll llz

a sum of pairwise terms. Therefore, there should exist a real fungiian:

U'(AU'(B) +U'(AU'(C) + U (B)U'(C) = vo(A) + vo(B) + v9(C) A+B+C=0.
(62)

decompose into

Then the scalar term in (60) has the form

N N
D W i = ) +voxi —x)] = Y V(xi — x).
i#l il

T We restrict ourselves here by considering the superpotentidiat are symmetric under permutationsgfthough
this approach admits direct generalization to non-symmetric superpotentials with separable CMM.
T We imply here thatvc = 0, except for the well known Calogero model (see below).
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Table 1. ¢(x) is the Weierstrass function;¢’(x) = — P(x) andw is the half-period [5].

U(x) V(x) U”(x)
b 3 b
1,2 2.2
zax“+bln(x) ;+§a x°+ 3ab a—;
alx| 242 2a8(x)
Insin a? 4.2 a
a X — —a —_
six 3 sin? x
a? 2 a
alnsinhx — +Z24° —
sinffx 3 sink? x
2
x| ir 3 ¢ (w) 1 {(w)
In —|= 2 = - Zx]) —-ZpP —aP(x) —a>——
a 91<2w 20)) a |:2<§(x) - x) > (x)] aP(x)—a -

All solutions of (62) were found by Calogero [18]. They are given in the table 1 (see [7]).
So, the components (60) are now pairwise and take the form

N N
HM = %[—A+ZV(xi —xl)—ZB}JM)U.’;]. (63)

i#l i#]
Let us note that to obtain the standard Calogero model/4k) = ax?/2 +bInx), we have
to add into (63) the terms

(W F W) = 3(@®N?yf, FaN)

corresponding to non-zel¢ (yy) = %aNyIZ\,.

In the cases of superpotentials from table 1, which correspond to Calogero and Sutherland
models, the spectrum of the super-Hamiltonidpn was obtained in [6,13]. For the same
superpotentials, components (63) of the super-Hamiltonian coincide with (also exactly
solvable) matrix generalizations of Calogero and Sutherland models [9, 11] in the partial case
of the Young tableauxN — M, 1™). These tableaux were obtained in the theorem in this
paper (see appendix).

Appendix

In this appendix, we will prove the following:

Theorem. The operatorl%,-j realizes on the states (37) the irreducible representation of the
group Sy of permutations ofs", corresponding to the Young tablegdi — M, 1),

Atfirst, itis necessary to prove the lemma, corresponding to the partial case of the theorem
formM = 1.

Lemma. The operatork;; (and matricesl;;, (36)), acting on the stateg; |0), realize the
irreducible representation of the groufy of permutations of/;", corresponding to the Young
tableau(N — 1, 1).

Proof by induction on N. For N = 2 we have only one Jacobi coordinateyy =
(1/\/5)(1/{ — v¥5). Obviously, the state; |0) is transformed as a representatiorsgfwith a
Young tableay1?).
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Let us suppose thapy|0), ..., ¢y _,|0) form a representation of the groufy_, of
permutationst of’; i’ < N, corresponding to a Young tableaty — 2,1). It is to be
proved thatp;|0), ..., ¢, _,|0) form a representation of the grodp of permutations of;",
corresponding to a Young tableé — 1, 1).

(a) We follow the method from the book [16] of construction of the irreducible representations
of Sy when tAhe representations 8f_1 are knownt. It uses tr)e fact that an arbitrary
permutationk;; of y", 1//; is a combination of the permutatio®s ; wherei’, j' < N

andI?N_lyN. The only non-trivial case here is

A

Kjyy = IeNfl.NIe_i’,Nfl[eNfl,No (A1)

The method of [16], applied to a representation with a Young tali#ay 1, 1) (we do
not reproduce the long proof here) yields the following result: the subgSqup of Sy
consisting of the permutatiorks ;- is realized in this representation by — 1) x (N —1)

matrices
Uijy O
( : 1) (A2)

whereU; ;- are the matrices of representationSaf_; corresponding to a Young tableau
(N — 2, 1); their components ar&; ., but here and below we will not write the
indicesa, b for brevity. The permutatioﬂ‘fN_LN is realized in this representation by the
(N — 1) x (N — 1) matrix

1
1
1 JNN =2 |- (A3)
N-1 N-1
VNN -2) 1
N-1 N-1

(b) It is easy to show that in the terms of the Jacobi variables the permutatiafs arfe
realized by the following matrices:

TND 0
@'j")
( ’ 1) (A4)

whereT . is equal tof, from the previous induction step. Because of the assumption
of induction,T(f.f‘;gl) = Ugrj».

The permutationk y_1 v is realized (see (36)) by the following matriXty_1, ypc =
Zﬁ,zl Rp; Tn-1,n)j1 R SubstitutingT(y -1, v from (33) (R is the same as above)

T Here and below, the (physical) coordinatgsy;: of the firstN — 1 particles are denoted by indicgs;j’, k/, . ...
Let us stress that they are not the Jacobi coordinates, .
¥ In[16] another numeration of basis vectors was used.
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we obtain
1
. 1
Tin-1n) = 1 JNN =2 |- (A5)
N-1 N-1
VNN =2) 1
N-1 N-1

The permutatiorl?bN can be decomposed into a combination of these. Thus, the proof of the
lemma is completed.

Now we can prove the theorem by induction &

For M = 1 the statement of the theorem is satisfied due to the lemma.

Let us suppose that, for some fixaéd, on the statess,b,j1 . ~-¢;M|0) the irreducible
representation of the groufyy of permutations ofy;” with i < N, corresponding to the
Young tableauN — M, 1M), is realized.

Then we use this assumption to prove that on the stg‘,tleS«qs;Mﬂw) the irreducible
representation of the grouy, corresponding to the Young tableahi — M — 1, 17*1)  is
realized.

(a) Aswe have mentioned above, equation (37) is transformed under permutatiof fasm
an antisymmetric tensor. Such a tensor can be provided with a Young tableau, describing
the symmetry of its indices, namely,{] (we deliberately use different bracketst).
The assumption of induction affirms that (37) transforms unfjeras an irreducible
representation with a Young tableaN — M, 1¥).
Let us consider a tensor product of the states (37)¢gnd|0) and show that it contains
¢;1 o <Z‘);7—11/1+1|(:))'
The tensor product will contain the tensors whose index structure corresponds to the Young
tableaux, contained in the so-called exterior product[16] of Young tableaux, corresponding
to the index structure of the states (37) aifd, |0), namely, [ ® [1].
If some Young tableaul}] is contained in [¥] ® [1], then, the corresponding tensor
representation ofy is contained in the tensor product of the tensor representation
of Sy corresponding to (37) and one corresponding¢§9ﬁ1|0). However, these
representations can also be considered as irreducible representatnsvith Young
tableaux(N — M, 1) and (N — 1,1). The tensor representations from the tensor
product may also be decomposed into a direct sum of irreducible representatigys of
corresponding to some Young tableaux. The last Young tableaux form a so-called interior
product: (N — M, 1M) x (N — 1, 1).
So the Young tableaux obtained after decomposition of a tensor correspondinjgate|
contained iN — M, 1) x (N — 1, 1).

(b) Itis shown in [16] that for any Young tableauy]| . .., A]

s Ml ®[1] = Z[xl,... T YR I VST A (A6)

T Letus stress that every state (37) is described by two in principle different Young table¥{jxdé¢hoting its index
structure as antisymmetric tensor, ang, .. ., An), describing it as an irreducible representation of the symmetric
groupSy (the notation is taken from [16]).

T ®, x denote the exterior and interior products of Young tableaux, respectively.
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(c

~—

«d

~

(e)

So, for the state (37) we obtain
1Mol =n1"Ye2 1" (A7)

The statep, --- ¢, 10) has an index structure described by the Young table¥t'[1
and is a direct sum of irreducible representations gfcorresponding to some Young
tableaux. We will further denote the set of these tableaudasTaking into account the
considerations from point (b), we can state tiét— M, 1) x (N -1, 1) = (A) - --.

It is known [16] that the interior product of every Young tableau with— 1, 1) contains
only the Young tableaux differing from the initial one by no more than the position of
one cell. (Let us remind the reader that all the Young tableaux describing the irreducible
representations dfy contain exactlyv cells each.) ThereforeN — M, 1Y) x (N -1, 1)

may contain only the following Young tableauxn — M, 14), (N — (M + 1), 1M*1),
(N—=M,2,1M2) (N — (M +1),2, 1M1,

It is useful here to consider the staiﬁ1 e ¢;’N_1|0). Its index structure corresponds to

a Young tableau [1~1]. As a representation of, this state corresponds to a Young
tableau(1V), because

$1 B 1l0) = 7 -+ B 1o dRI0) = (DY gy} - $310)
= Convy - ¥y10) (A8)

whereC is some non-zero constant. It is obvious tﬁa,t, acting upon (A8), changes its
sign.

Let us consider a tensor productggf - - - ¢, |0) with ¢ |0), then once more a tensor
product of the result witld>,jM+2|0), ..., then a tensor product of the result wiﬁgiNJO),
altogether(N — M — 2) times. Reproducing the considerations from point (a), especially
the formulae (A6) and (A7), we can see that this product contains a tensor with the index
structure described by 1 1]:

1M eille --ol=1"Ye---. (A9)

In terms of irreducible representations 6f;,, equation (A9) can be rewritten as:
A x(N-1L,1Dx---x(N—-11) = (B)®---where(B) denotes the Young tableaux,
corresponding to the sta#g - - - ¢y, _,|0), and(A) is defined in (b).

Let (A) not contain the tableagv — (M + 1), 1¥*1). As mentioned in point (c), the
interior product of every Young tableau witlv — 1, 1) contains only the Young tableaux
differing from the initial one by no more than the position of one cell. Therefore, the
interior product of every Young tablegWv — M — 2) times with (N — 1, 1) contains
only the Young tableaux differing from the initial one by no more than the position of
N — M — 2 cells. The remaining three tableaux in (c) differ frgad’) by more than

N — M — 2 cells because they all have less thidnt+ 2 cells in the first column. So,
equation (A9) is not satisfied, unleg$) contains the tablealv — (M + 1), 1M*1),

(f) The dimension of the space of staig} - -- ¢, _|0) is equal toC}'*1, because it is a

dimension of a subspace with a fermionic number equa tol, when the total fermionic
number is equal to&v — 1.
The dimension of the Young tableaty — (M + 1), 1M*1) (and hence the dimension of

the corresponding irreducible representatiors @j is also equal tcC}\‘fj, because [16]
the dimension is the number of different ways of placing the integer numbers from 1 to

N consecutively into thev cells of the tableau, so that the number of occupied cells does
not increase with the number of the line, and, placing each number into the line, we place
it as close to its left end as possible.
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At first, we place 1 into the corner cell. Then, the distribution of the numbers in the cells

is determined unambiguously by deciding what numbers we place inty the\ — 2

lateral cells. It can be done iy~ 2 = ¥+l ways.

So,(A) contains the tablea@V — (M + 1), 1¥*1) and nothing more. Therefore, the state
qb,jl e ¢ZM+1 |0) corresponds to an irreducible representatiagyofvith this Young tableau.

The proof is now completed. O
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